
Sound and Complete Mutation-Based
Program Repair

Bat-Chen Rothenberg and Orna Grumberg

CS Department, Technion, Israel
{batg,orna}@cs.technion.ac.il

Abstract. This work presents a novel approach for automatically re-
pairing an erroneous program with respect to a given set of assertions.
Programs are repaired using a predefined set of mutations. We refer to
a bounded notion of correctness, even though, for a large enough bound
all returned programs are fully correct. To ensure no changes are made
to the original program unless necessary, if a program can be repaired by
applying a set of mutations Mut, then no superset of Mut is later con-
sidered. Programs are checked in increasing number of mutations, and
every minimal repaired program is returned as soon as found.
We impose no assumptions on the number of erroneous locations in the
program, yet we are able to guarantee soundness and completeness. That
is, we assure that a program is returned iff it is minimal and bounded
correct.
Searching the space of mutated programs is reduced to searching unsat-
isfiable sets of constraints, which is performed efficiently using a sophis-
ticated cooperation between SAT and SMT solvers. Similarities between
mutated programs are exploited in a new way, by using both the SAT
and the SMT solvers incrementally.
We implemented a prototype of our algorithm, compared it with a state-
of-the-art repair tool and got very encouraging results.

1 Introduction

In the process of software production and maintenance, much effort and many
resources are invested in order to ensure that the product is as bug free as
possible. Manual bug repair is time-consuming and requires close acquaintance
with the checked program. Therefore, there is a great need for tools performing
automated program repair. In recent years, there has been much progress in this
field (e.g., [14, 23, 22, 6, 19, 12]).

In previous work, the presented motivation for the development of program
repair tools is to enable the automatic repair of real-world bugs found in large-
scale software projects. As a result, existing tools for automated repair aim at
being scalable and are targeted for the type of bugs found in deployed software.

We have designed our algorithm with a different goal in mind. In our opinion,
automatic repair can be equally or even more useful when applied in the earlier
stages of development, before any manual effort was invested in debugging at all.

This is because, in our view, it is precisely the initial debugging work that could
benefit the most from this automation, since it involves relatively simple bugs
being fixed manually by the programmer. For these early development stages,
as well as for millions of independent programmers working on small pieces of
code, even a non-scalable automatic repair method can help save a lot of time
and avoid much frustration.

Our vision is to have a fast, easy-to-use program repair tool, which program-
mers can run routinely. Ideally, programmers will run the tool immediately after
making changes to the program, before any manual effort was invested in de-
bugging at all. Then, if the program contains an assertion violation, the chosen
course of action will be determined by the tool’s result. If the tool returns one
or more possible repairs, those are guaranteed to suppress all assertion viola-
tions and thus may be safely applied to the program. If the tool does not return
any possible repairs, the programmer can be sure that the problem can not be
solved using changes within the search space of the tool. In the later case, though
manual debugging will still be needed, knowing what will not solve the problem
might give the programmer a head start.

In this work, we take a step forward towards accomplishing this vision, pre-
senting a novel algorithm for automatically repairing a program with respect
to a given set of assertions. We use a bounded notion of correctness. That is,
for a given bound b, we consider only bounded computations, along which each
loop in the program is performed at most b times and each recursive call is in-
lined at most b times. We say that a program is repaired if whenever a bounded
computation reaches an assertion, the assertion is evaluated to true. Our repair
method is sound, meaning that every returned program is repaired (i.e., no vio-
lation occurs in it up to the given bound). Just like Bounded Model Checking,
this increases our confidence in the returned program.

Our programs are repaired using a predefined set of mutations, applied to
expressions in conditionals and assignments (e.g. replacing a + operator by a −),
as was shown useful in previous work [4, 27, 5]. We impose no assumptions on
the number of mutations needed to repair the program and are able to produce
repairs involving multiple buggy locations, possibly co-dependent. To make sure
that our suggested repairs are as close to the original program as possible, the
repaired programs are examined and returned in increasing number of mutations.
In addition, only minimal sets of mutations are taken into account. That is, if a
program can be repaired by applying a set of mutations Mut, then no superset
of Mut is later considered. Intuitively, this is our way to make sure all changes
made to the program by a certain repair are indeed necessary. Our method is
complete in the sense of returning all minimal sets of mutations that create a
repaired program. Specifically, if no repair is found, one can conclude that the
given set of mutations is not enough to repair the program. Furthermore, we
show that for large enough bound, all returned programs are (unbounded) fully
correct.

Note that, the choice to use mutations for repair makes the search space
small enough to enable us to have completeness at an affordable cost, yet it is

2

expressive enough to repair meaningful bugs (especially those present in earlier
stages of development).

Our algorithm is based on the translation of the program into a set of SMT
constraints which is satisfiable (i.e., the conjunction of constraints in it is satis-
fiable) iff the program contains an assertion violation. This was originally done
for the purpose of bounded model checking in [1]1. Our key observation is that
mutating an expression in the program corresponds to replacing a constraint
in the set of constraints encoding the program. Thus, searching the space of
mutated programs is reduced to searching unsatisfiable sets of constraints. The
latter can be performed efficiently using a sophisticated cooperation between
SAT and SMT solvers, as was done in [16] for the purpose of finding minimal
unsatisfiable cores.

The SAT solver is used to restrict the search space of mutated programs
to only those obtained by a minimal mutation set and the SMT solver verifies
whether a mutated program is indeed correct. Both the SAT solver and the SMT
solver are used incrementally, which means that learned information is passed
between successive calls, resulting in big savings in terms of resources used.
Using an SMT solver incrementally constitutes a novel way to exploit information
learned while checking the correctness of one program for the process of checking
correctness of another program. Note, that if the programs are similar, their
encoding as sets of SMT constraints will also be similar (due to our observation
presented above), resulting in bigger savings when using incremental SMT. This
is another important contribution of this paper.

We implemented a prototype of our algorithm for C programs, compared it
with the methods of [11, 12] and got very encouraging results.
To summarize, the main contributions of our work are:

– We propose a novel sound and complete algorithm which returns all minimal
repaired programs.

– The returned programs are proved to be bounded correct. However, we show
that for a large enough bound, all returned programs are fully correct and
all minimal fully correct programs are returned.

– We develop an efficient implementation of the algorithm, based on sophisti-
cated cooperation between SAT and SMT solvers, both used incrementally.

1.1 Related work

Several repair methods follow a test-based ”generate and validate” approach.
They iteratively select a candidate from the repair search space and check its
validity by running all tests in the test suite against it. Examples are GenProg
[14, 13], TrpAutoRepair [25], AE [31], RSRepair [26] and the more recent SPR
[19]. PAR [9], Monperrus and Martinez [20] and Prophet [18] suggest to use in-
formation learned from successful human repairs to extract and prioritize repair

1 To be precise, [1] first translates the program into a bit-vector formula and then
further translates it into a propositional formula. Here, we only use the first part of
the translation

3

actions suitable for the suspected location of the error. Similarily, CodePhage
[28] directly transfers pieces of code from correct donor applications to buggy
recipient ones. AutoFix-E [30] and AutoFix [24] also use location based repair
actions, but require programs to be equipped with contracts.

SemFix [23], DirectFix [21] and Angelix [22] use symbolic execution to infer a
repair constraint and synthesize a repair based on it. Nopol [6] also uses synthesis,
but only deals with buggy if conditions and missing pre conditions. [10] uses
deductive synthesis and is based on pre and post conditions, rather than tests
alone. [8] and [29] describe systems using automata and use LTL specifications
for repair.

Mutation based program repair (where the term ”mutation” has the same
meaning as in this work) was previously done in [27] and [5]. Both use a test suite
as the only specification and focus their efforts on efficient error localization. We,
on the other hand, use a formal specification and have no use of localization,
since we have to consider all locations in order to guarantee completeness. Also,
we allow the repair of multiple expressions, whereas both methods assume a
single fault ([5] mentions a possible extension to multiple faults, but this is not
a part of the described method).

Finally, he methods of [11, 12] are similar to ours in that they work on C
programs equipped with assertions (or test suites) and assume faulty expressions.
The differences are that they use program analysis based on a finite number of
inputs each time, while we use incremental SMT solving that allows reuse of
information. Also, they use templates (e.g. a linear combination of variables)
for repair, while we use mutations and are able to guarantee completeness. We
provide a comparison of performance results between our method and theirs in
sec. 6.

2 Preliminaries

Program correctness For our purposes, a program is a sequential program
composed of standard commands: assignments, conditionals, loops and function
calls. Each command is located at a certain program location li, and all com-
mands are defined over the set of program variables X.

In addition to the standard commands, a program may contain assumptions
and assertions, which are commands that help the user specify the desired behav-
ior. Assumptions (resp., assertions) are commands of the form assume(e) (resp.,
assert(e)), where e is a boolean expression over X. An assertion assert(e) at
location li, specifies that the user expects e to evaluate to true whenever control
reaches li, in all program runs. If e evaluates to true every time control reaches
li during a run r, we say the assertion holds for r. Otherwise, the assertion is
violated. Once an assertion in the program is violated, the program terminates
(this early termination indicates an error has occurred and is usually preceded
by an error message explaining what went wrong). An assumption assume(e) at
location li, specifies that every run reaching li with e evaluated to false is termi-
nated. Unlike before, this early termination is not an indication that something

4

went wrong, but simply that the user does not want to consider the rest of this
run when checking correctness. For example, if a function f gets as input an
integer n, but the user assumes it will only be called with n ≥ 2, an assumption
assume(n ≥ 2) can be inserted at the beginning of the function to make sure all
runs in which this function is called inappropriately will be truncated.

Def. 1 (correct program). A program is correct if all assertions in it hold in all
runs.

For a program P and an integer b, a b-run of P is a run of P that goes
through each loop at most b times and has a recursion depth of at most b (i.e.,
the depth of the call stack is at most b during the entire run).

Def. 2 (b-correct program). Let b be an integer. A program is b-correct if all
assertions in it hold in all b-runs.

Our repair method aims at finding programs which are b-correct, therefore
we use the term repaired program as a notation for a b-correct program.

2.1 Incremental SAT and SMT solving

A SAT solver is a decision procedure for deciding the satisfiability of a proposi-
tional formula. Formulas are usually in conjunction normal form (CNF) and can
also be seen as a set of clauses. Incremental SAT solving is a general name for a
set of techniques aimed at improving the SAT solver’s performance when called
repeatedly for similar formulas (i.e., similar sets of clauses). The basic principal
behind these techniques is to save running time by retaining information learned
by the SAT solver between calls.

An SMT solver (where SMT stands for satisfiability modulo theories), is
another kind of decision procedure of much recent interest. It decides the satisfi-
ability of a formula expressed in first order logic (FOL), where the interpretation
of some symbols is constrained by a background theory (for more details see [3]).
Examples of commonly used theories are the theory of linear arithmetic over in-
tegers and the theory of arrays. Just like a CNF formula can be seen as a set
of clauses, an SMT formula can be seen as a set of constraints in the theory
(referred to as SMT constraints).

Similarly to SAT solving, incremental techniques can be applied to SMT
solving as well. For this to be useful, an SMT formula ϕ is usually instrumented
with boolean variables called guard variables. The instrumentation of a formula
ϕ is done as follows: each constraint ci ∈ ϕ is replaced by the constraint xi → ci,
where xi is a fresh boolean variable. As a result, the new constraint can easily
be satisfied by setting xi to false. Guard variables are conjuncted with ϕ and
are used as assumptions, passed to an incremental SMT solver. They have the
effect of canceling out a subset of constraints. For example, if ϕ = c1 ∧ c2,
after instrumentation we get the formula ϕ′ = (x1 → c1) ∧ (x2 → c2). Calling
an incremental SMT solver on ϕ′ with the set of assumptions {x1} causes the
SMT solver to check the satisfiability of ϕ′ ∧ x1, which essentially disables the

5

constraint c2. That is, because nothing prevents x2 from being set to false,
and x1 must be set to true, checking satisfiability of ϕ′ is reduced to checking
satisfiability of c1.

Boolean cardinality constraints Boolean cardinality constraints are con-
straints of the form

∑n
i=1 li ≤ k, where li is a literal assigned the value 1 if

true and 0 if false, and k is an integer constant. For readability, we will refer
to these constraints using the notation AtMost({l1, .., ln}, k), also used in [17],
in order to remind the reader of their intuitive meaning: require that at most k
of these literals get the value true. Similarly, the notation AtLeast({l1, .., ln}, k),
denotes the constraint

∑n
i=1 li ≥ k. For our implementation we used Minicard

[15], which is a SAT-solver designed to perform well on instances containing
cardinality constraints.

3 Our approach

In this section we fix a bound b and refer to repaired programs which are b-
correct. Figure 1 presents an overview of our repair system. It is composed of
three units: the translation unit, the mutation unit and the repair unit.

The initial processing is done in the translation unit. The translation unit
translates the input program into two sets of SMT constraints: Shard, encoding
parts of the program which cannot be changed (e.g. assertions), and Ssoft. Then,
the mutation unit constructs for each constraint ci in Ssoft a set of alternative
constraints Si, by applying mutations to ci. Finally, the repair unit searches for
all sets of constraints encoding minimal repaired programs (where minimality
will be defined with respect to the set of mutations used). In the rest of the
section we explain in detail how each unit works.

Fig. 1: Overview of the repair system

3.1 The translation unit

The translation unit is the first step of the process. It gets an input program
and an integer bound b and converts the input program into a set of SMT
constraints s.t. the program is b-correct iff the set of constraints is unsatisfiable
(i.e the conjunction of all constraints in it is unsatisfiable).

6

Before the set of constraints is constructed, the program undergoes three
transformations: simplification, unwinding, and conversion to static single as-
signment (SSA) form. This transformations are taken from [1], but we present
them here because the details are important in order to understand our method.

To explain the different transformations we will use the example presented
in Figure 2. Figure 2a presents a C function named sum, which gets as input an

integer n and is supposed to return
n∑
1
i. But, being used to 0-based counting,

the programmer made a mistake in line 3, by initializing i to 0 instead of 1
and checking i < n instead of i <= n. The assertion in line 6 specifies that the

result should always be calculated according to the formula n·(n+1)
2 , which is the

correct sum calculated using the formula for a sum of an arithmetic progression.

We will now go over each transformation and explain its role shortly, using
the described example.

Simplification Figure 2b shows the result of applying simplification to the
program in Figure 2a. Complex constructs are replaced with simpler ones (for
example, the for loop was replaced with a while loop). More importantly, all
conditions are assigned to auxiliary boolean variables (g in the example). Note
that after this step, all original program expressions are right-hand-sides of as-
signments.

Unwinding Figure 2c shows the result of applying unwinding for b = 2 to
the program in Figure 2b. The loop is unwound b times by duplicating the loop
body b times, where each copy is guarded using an if statement that uses the
same condition as the loop statement (lines 5-15). Inside the innermost copy,
an assume statement is inserted with the negation of the condition (line 13), to
specify we do not want to consider runs going through the loop more than b
times.2 Function calls are inlined, with recursive calls treated similarly to loops
(inserted up to a depth of b).

Conversion to SSA form The program is converted to SSA form (which
means each variable is assigned only once). Figure 2d shows the result of con-
verting the program in Figure 2c to SSA form. All variables are replaced with
indexed variables, and whenever a variable appears as the left-hand-side of an
assignment, its index is increased by 1. If a variable x is assigned inside a con-
ditional statement and is used after the statement, an assignment is inserted
straight after the conditional statement to determine which copy of x should
be used. For example, lines 16-17 determine the updated value of sum after the
nested if statements, according to g1 and g2. We refer to this type of assignments
as Φ-assignments.

After the above transformations, conversion to a set of SMT constraints S is
straightforward. An assignment x = e is converted to the constraint x = e, an

2 In [1] an assertion was inserted and not an assume. Since we fix the program with
respect to all assertions in it, we need this to be an assume and not an assert, because
we do not want to refer to unbounded runs as bugs.

7

assume(e) is converted to the constraint e and an assert(e) is converted to the
constraint ¬e.3 Shortly, we say that a constraint encodes a statement.

In the next step, the mutation unit will apply mutations independently to
every constraint passed to it. The problem is that, due to unwinding, all state-
ments which are part of a loop (as the loop condition or in the loop body) are
encoded using more than one constraint in S. This is of course undesirable, be-
cause we do not want constraints encoding the same statement to be mutated
using different mutations. To avoid this, if a statement s is encoded using the
constraints c1, ..., ct ∈ S (where t > 1), we remove c1, ..., ct from S, and add
instead one complex constraint,

∧t
i=1 ci. Note that this has no effect on the sat-

isfiability of S (which is determined by the conjunction of all constraints in S
anyway).

As a final step, the modified set S is partitioned into two sets: Ssoft, contain-
ing all constraints encoding statements subject to repair (i.e statements contain-
ing original program expressions), and Shard, containing the rest (constraints
encoding negated assertions, assumptions and Φ-assignments). Note that since
we made sure all original program expressions are right-hand-sides of assign-
ments using simplification, we can be sure all constraints in Ssoft are of the
form (x = e) (where x is an SSA variable and e is an expression), or of the
form (c1 ∧ c2, ...,∧cn) where each ci is of the form (x = e). Furthermore, we can
be sure all program statements which are subject to repair are encoded using
a single constraint and vice versa, and thus the size of Ssoft will always be the
same as the number of original program expressions (regardless of the bound b).

3.2 The mutation unit

We assume the program is incorrect because it contains one or more faulty ex-
pressions, and we try to repair it by applying mutations to program expressions.
A mutation can be any function mapping a program expression to another pro-
gram expression of the same type. Examples of mutations include replacing an
operator by a similar one (e.g., ≤ by <) and applying constant manipulations
(e.g., replacing a constant by 0). The mutation unit is the component in charge
of applying the mutations. In fact, as described in Fig. 1, the mutations are
not applied directly on the program, but on constraints encoding the program,
received from the translation unit.

As explained in Section 3.1, the constraints in the input set, Ssoft, can be sin-
gle assignment constraints or multiple assignments constraints. Formally, given
a mutation M , and a single assignment constraint (x = e), M(x = e) is the con-
straint (x = M(e)). For a multiple assignment constraint c = (c1 ∧ c2 ∧ ... ∧ ct),
M(c) is the constraint (M(c1) ∧M(c2) ∧ ... ∧M(ct)).

The mutation unit maintains a fixed list of possible mutations,M1,M2, ...,Mm.
For each ci ∈ Ssoft (1 ≤ i ≤ n) all the mutations are applied and the set

3 Assertions are negated because we want a satisfying assignment to the set of con-
straints to represent a violation of the assertion. If multiple assertions exist in the
code, the disjunction of their negations is added as a constraint.

8

(a) Original program (b) Program after simplification

(c) Program after unwinding for b = 2 (d) Program after conversion to SSA

Fig. 2: Example of program transformations during translation

9

Si = {ci,M1(ci), ...,Mm(ci)} is created.4 Note that the set Si contains the orig-
inal constraint ci, so leaving a statement intact is always an option. Finally, the
sets S1, ..., Sn are passed on to the repair unit, which uses them to search for a
repair.

3.3 The repair unit

Basic terms and definitions The input to the repair unit is a set of ”hard
constraints”, Shard, encoding the parts of the program which can not be changed,
and n disjoint sets of ”soft constraints”, S1, ..., Sn, corresponding to n program
locations where a possible fault may occur. Every set Si contains one special
constraint, cio, encoding the original statement in line i, referred to as the original
constraint. The rest of the constraints in Si encode possible replacements for line
i, obtained by applying mutations to the expression in the original statement.

Intuitively, the goal of the repair unit is to construct a repaired program by
choosing one constraint from each Si. Formally, we define a selection vector (sv)
[c1, ..., cn] as a vector of constraints where ci is taken from Si for all 1 ≤ i ≤ n.
Recall that constraints in Si encode different statements for line i, therefore
choosing a specific constraint from each Si can be seen as choosing a statement to
appear in each line, i.e choosing a mutated program. Thus, each selection vector
encodes a program. We are interested in selection vectors encoding repaired or
correct programs. This leads to the following definitions.

Def. 3 (Rsv,Csv). A selection vector is repaired, denoted Rsv, if it encodes
a repaired program. A selection vector is correct, denoted Csv, if it encodes a
correct program.

Though (bounded) correctness is essential for repair, it is not enough. We
would also like for the repair to be ”minimal”, in the sense that no changes are
made unless necessary. For example, if a program can be repaired by applying a
certain mutation to line number 2, we are not interested in a repair suggesting
to additionally mutate line number 3, even if it makes the program repaired. To
capture this intuition we define a partial order between constraints and between
selection vectors.

Def. 4 (v partial order between constraints). Let c1i , c
2
i ∈ Si. c

1
i v c2i if c1i = cio

and c2i 6= cio (i.e., only c2i encodes a change to line i), or if c1i = c2i (i.e., both
encode the same statement for line i).

Def. 5 (v partial order between svs). Let v1 = [c11, ..., c
1
n], v2 = [c21, ..., c

2
n] be

selection vectors. v1 v v2 if for all 1 ≤ i ≤ n c1i v c2i .

Def. 6 (mRsv,mCsv). A repaired selection vector v is minimal repaired, de-
noted mRsv, if there is no v′ s.t. v′ 6= v, v′ is a repaired selection vector and
v′ v v.

4 This is a simplification made for ease of presentation. In practice, we might not
be able to (or not want to) apply all mutations to all constraints. The choice of
mutations to use may depend on the expression’s type and/or its complexity.

10

A correct selection vector v is minimal correct, denoted mCsv, if there is no
v′ s.t. v′ 6= v, v′ is a correct selection vector and v′ v v.

Finally, it makes sense to prefer repairs involving as few statements as possi-
ble, because those are more likely to satisfy the user. For example, if the program
can be repaired by mutating line 1 and also by mutating lines 2 and 3, the first
repair is preferable. This intuition is formalized using the following definition:

Def. 7 (size). Let v be a selection vector. The size of v, denoted size(v), is
|{i|1 ≤ i ≤ n, v[i] 6= cio}|.

In other words, size(v) is the number of mutated lines in the program en-
coded by v. Thus, the repair unit should only look for minimal repaired selec-
tion vectors, and amongst them prefer those with smaller size. In what follows,
we present an algorithm that computes all minimal repaired selection vectors
(mRsvs), and produces results in increasing size over time.

4 Algorithm AllRepair for the repair unit

4.1 Outline of the Algorithm

Figure 3 presents the general outline of our algorithm. Overall, the algorithm
goes over the search space of all svs, in increasing size order. This order is
enforced using the variable k, which limits the allowed size of the searched svs
(k is initially 1 and grows over time)5. Once the search reaches an sv v, we say
v has been explored (until then, v is unexplored). The algorithm is divided into
two repeating phases:

Fig. 3: Outline of Algorithm AllRepair

5 k is not to be confused with the unwinding bound b, which is fixed at this point.

11

Phase 1 is responsible for finding the next unexplored sv. First, it looks for
an unexplored sv of size k. If one exists, it is passed on to Phase 2. Otherwise,
it checks if there exist any unexplored svs left at all. If not, the search is over
and the procedure ends. Otherwise, k is repeatedly increased by one until an
unexplored sv v of size k is found (v must be found for some k since we know
an unexplored sv exists). Once found, v is passed on to Phase 2.

Phase 2 gets as input an unexplored sv v. First, it checks if v is repaired,
that is, if v is b-correct. If it is, v is returned as a possible repair. In addition,
if v is repaired, Phase 2 marks not only v as explored, but also every sv v′ s.t.
v v v′. This is done in order to make sure that we will not waste time exploring
v′ in the future, since it is necessarily not minimal. If v is not repaired, then only
v is marked as explored.

4.2 Algorithm AllRepair in detail

The pseudo-code of algorithm AllRepair is presented in Figure 4. This algo-
rithm follows the general outline presented before, where an incremental SAT-
solver with cardinality constraints is used for the implementation of Phase 1, and
an incremental SMT-solver is used for the implementation of Phase 2. Note that,
we are interested in the satisfying assignments returned by the SAT solver and
in the unsatisfiable instances returned by the SMT solver. The former represent
svs of desired sizes while the latter represent repaired programs.

The description below is strongly based on the background given in Sec-
tion 2.1. The first step is to instrument all constraints in S1, . . . , Sn with guard
variables. This is done using a function call in line 2, and the results are the sets of
instrumented constraints, S′1, . . . , S

′
n (where S′i = {xj → cj | for every cj ∈ Si})

and the sets of fresh guard variables used to guard the constraints in each set,
V1, . . . , Vn (where Vi contains the variables xj used to guard constraints in Si).
This instrumentation serves us in building both the SMT formula τ and the
boolean formula ϕ (passed to the SAT-solver).

Next, in lines 3-6, τ is initialized to the conjunction of all constraints in Shard

and all the instrumented constraints. Notice that this will enable us to determine
which of the soft constraints will be considered in each call to the SMT solver,
by using their guard variables as assumptions (while hard constraints will be
considered in all calls, regardless of the assumptions).

The boolean formula ϕ is initialized in lines 7-11. The boolean variables
composing this formula are the guard variables V1, ..., Vn, and therefore every
satisfying assignment of it can be seen as a subset of guard variables (those
assigned true by the assignment). We would like every satisfying assignment to
be not just any subset of guard variables, but one consistent with the definition
of an sv, i.e., a subset that contains exactly one selector variable from each Vi.
Lines 9-10 add to ϕ the necessary constraints to enforce this. From now on, we
will say that satisfying assignments returned by the SAT-solver represent svs.

Next, we would like to be able to add an upper bound on the size of repre-
sented svs. For this purpose, we define an additional formula, ϕk. In order to
construct ϕk, we first need to identify which guard variables guard the original

12

1: function AllRepair(Input: Shard, S1, ..., Sn, Output: All mRsvs)
2: S′

1, ..., S
′
n, V1, ..., Vn ← AddSelVars(S1, ..., Sn)

3: τ ← true . initialization of SMT formula
4: for c ∈ Shard ∪ S′

1 ∪ ... ∪ S′
n do

5: τ ← τ ∧ c
6: end for
7: ϕ← true . initialization of boolean formula
8: for 1 ≤ i ≤ n do
9: ϕ← ϕ∧AtMost(Vi,1) . choose at most one statement per line

10: ϕ← ϕ∧(
∨

v∈Vi
v) . choose at least one statement per line

11: end for
12: Vo ← GetSelVarsOfOriginal(V1, ..., Vn)
13: k ← 1
14: while true do
15: ϕk ← ϕ ∧AtLeast(Vo, n− k)
16: satRes, V ← SAT (ϕk)
17: if satRes is unsat then
18: if ¬SAT (ϕ) then . No more svs to explore
19: return
20: end if
21: repeat
22: k ← k + 1
23: ϕk ← ϕ ∧AtLeast(Vo, n− k)
24: satRes, V ← SAT (ϕk)
25: until satRes is sat
26: end if
27: smtRes← IncrementalSMT(τ, V) . at this point V has been assigned
28: if smtRes is SAT then
29: ϕBlock ← BlockUnrepairedsv(V)
30: else
31: output Getsv(V, S′

1, ..., S
′
n)

32: ϕBlock ← BlockRepairedsv(V)
33: end if
34: ϕ← ϕ ∧ ϕBlock . ϕ includes new blocking; k is not changed
35: end while
36: end function

Fig. 4: Algorithm AllRepair for finding all mRsvs

constraints. This is done in the function call in line 12, and the result is stored
in Vo.

Lines 13-26 essentially implement Phase 1 of the outline in Figure 3. k is
initialized to 1 (line 13) and the iterative repetition of the two phases begins.
First, ϕk is set to the conjunction of ϕ and the clause AtLeast(Vo, n − k) (line
15). That is, in ϕk we additionally require that at least n− k variables from Vo
get the value true. This essentially means that every satisfying assignment to ϕk

now represents an sv of size at most k.

Next, we check whether there exists an unexplored sv of size at most k by
sending ϕk to the SAT solver (line 16). The satisfiability result (sat/unsat) is

13

saved into satRes, and if the result is sat, V gets the set of all variables assigned
true by the satisfying assignment. If the result is unsat, we check whether there
exists an unexplored sv (without limitation on size) by sending ϕ to the SAT
solver (line 18). If the result is unsat, the algorithm ends (line 19). Otherwise,
we repeatedly increase k by one and resend ϕk to the SAT solver, until the result
is sat (lines 21-25).

Phase 2 begins in line 27, by calling the function IncrementalSMT(τ, V),
which checks the satisfiability of τ with all variables in V passed as assumptions.
This is in fact equivalent to checking the satisfiabillity of the conjunction of all
constraints in Shard and all soft constraints guarded by variables in V (since all
other constraints can be easily satisfied by setting their guard variables to false).
Note that this formula is unsat iff the sv represented by V (i.e., the constraints
guarded by variables in V) is an Rsv. Therefore, if the result is sat, we create
a blocking clause ϕBlock for the case in which V represents an sv that is not
repaired (line 29). The blocking clause in this case is simply

∨
v∈V ¬v (i.e only

V is blocked). If the result is unsat, we translate V into the represented sv and
return it as a possible repair (line 31). The blocking clause we add in this case
(line 32) is

∨
v∈V \Vo

¬v, which requires that the same set of mutations will never
appear as a subset of any future set of mutations. This way we block not only V
but also every V ′ for which v v v′ (where v, v′ are the svs represented by V, V ′,
respectively).

5 Soundness and completeness of Algorithm AllRepair

In this section we analyze our algorithm. We show that it is sound, that is, every
returned sv is minimal repaired, and that it is complete in the sense that every
minimal repaired sv is eventually returned.

Clearly, the algorithm returns all mRsvs, because we go over all svs and only
mark an sv as explored if it is returned (as repaired), if it is not repaired, or if
it is not minimal. Also, all svs returned by the algorithm are mRsvs, because
every returned sv is repaired (it is explicitly checked), and is minimal repaired
because otherwise it would have been marked as explored by another sv in a
previous iteration. Thus, the following theorem holds:

Theorem 8 (Correctness of AllRepair). Our algorithm is sound and complete.
That is, every sv v returned by our algorithm is an mRsv and every mRsv v
is returned by our algorithm at some point.

5.1 Extension to full Correctness

We now analyze the soundness and completeness of our algorithm with respect
to full (unbounded) correctness. We show that there is a bound B for which the
notion of B-correctness is equivalent to the notion of correctness.

We first notice that since the set of mutations we consider is finite, so is
the set of mutated programs PG. For each P ∈ PG, if it is not correct then

14

it has a b-run for some b, along which some assertion is violated. Let bP be
the smallest bound for which such a run exists for P . Then, by definition, P is
not b-correct for any b greater than bp. Let max-bound B be defined as follows.
B = 1 + max{bP | P ∈ PG and P is not correct}. Clearly, for every program
P in PG, P is B-correct iff P is correct. The following theorem describes this
observation by means of the selection vectors encoding programs in PG.

Theorem 9 (Equivalence of B-correctness and Full correctness). Let B be the
max-bound defined above. Then v is an Rsv for bound B iff v is a Csv. Further,
v is an mRsv for bound B iff v is an mCsv.

Proof. The first part of the theorem is a direct consequence of the definition
of B. The second part of the theorem is a direct consequence of the first part.
This is because, by definition, v is an mRsv for bound B iff v is an Rsv for B
and every v′ s.t. v′ v v and v′ 6= v is not an Rsv for B. By the first part, this
happens iff v is a Csv and every v′ s.t. v′ v v and v′ 6= v is not a Csv, which
means v is an mCsv.

Theorem 9 implies that for a large enough bound, all returned programs are
correct and all minimal correct programs are returned.

6 Experimental results

We implemented a prototype of our algorithm on top of two existing tools. The
translation unit and the mutation unit were implemented in C++, by modifying
version 5.2 of the CBMC model checking tool [1]. The repair unit was imple-
mented in Python, by modifying version 1.1 of the MARCO tool [16]. MARCO
uses Z3 [2] as an SMT solver and Minicard [15] as a SAT solver.

Our current implementation works on C programs and uses a basic set of
mutations, which is a subset of the set used in [27]. We define two mutation
levels: level 2 contains all possible mutations and level 1 contains only a subset
of them. Thus level 1 involves easier computation but may fail more often in
finding a repaired program.

Table 1 shows the list of mutations used in every mutation level. For example,
for the sub-category of arithmetic operator replacement, in mutation level 1, the
table specifies two sets: {+,-} and {*,/,%}. This means that a + can be replaced
with a - , and vice versa, and that the operators *,/,% can be replaced with
each other. Constant manipulation mutations apply to a numeric constant and
include increasing its value by 1 (C→C+1), decreasing it by 1 (C→C-1), setting
it to 0 (C→0) and changing its sign (C→-C).

We have evaluated our algorithm on the TCAS benchmarks from the Siemens
suite [7]. The TCAS program implements a traffic collision avoidance system for
aircrafts. It has about 180 lines of code and it comes in 41 faulty versions,
together with a reference implementation (a test suite is also included but we
do not use it).

15

Level 1 Level 2

Op.
replacement

Arithmetic {+,-},{*,/,%} {+,-,*,/,%}

Relational {>,>=},{<,<=} {>,>=,<,<=},
{==,!=}

Logical {||,&&}
Bit-wise {>>, <<},{&,|,ˆ}

Constant
manipulation

C→C+1,C→C-1,
C→-C,C→0

Table 1: Partition of mutations to levels

We compared our results to those obtained by Könighofer and Bloem [11,
12]. The results are summarized in table 2. Each row refers to a different faulty
version of TCAS (we only include versions for which at least one method was
able to produce a repair). The specification used (in both our work and their’s)
is an assertion requiring equivalence with the correct version6. For each method
there are two columns: ”Fixed?”, which contains a + if the method was able to
find a repair for that version, and ”Time”, which specifies the time (in seconds)
it took to find a repair (if found). The bottom line specifies for each method the
number of repaired versions along with their percentage from the total 41 faulty
TCAS versions, and the average time it took to find a repair.

Our method
Method of [11] Method of [12] Mutation level 1 Mutation level 2

Ver. Fixed? Time[s] Fixed? Time[s] Fixed? Time[s] Fixed? Time[s]
1 + 65 + 1.392 + 8.879
2 + 26 + 12
3 + 1.725 + 68.651
6 + 55 + 79 + 2.056 + 33.762
7 + 11 + 6
8 + 17 + 38
9 + 41 + 28 + 1.203 + 17.286
10 + 6.429 + 90.666
12 + 2.157 + 77.852
16 + 9 + 6 + 84.711
17 + 12 + 6 + 55.538
18 + 14 + 40
19 + 18 + 37
20 + 85 + 26 + 1.709 + 15.883
25 + 82 + 100 + 2.68 + 16.234
28 + 34 + 35 + 93.678
31 + 1.246 + 4.661
32 + 1.902 + 85.349
35 + 41 + 46 + 92.866
36 + 8 + 6 + 94.599
39 + 82 + 101 + 2.558 + 16.393
40 + 4.829
41 + 4.875

16 (39%) 38 15 (36.6%) 38 11 (26.83%) 2.278 18 (43.9%) 48.151

Table 2: Performance results on TCAS versions

6 This is implemented by inlining the code of the correct version, saving the results of
both versions to variables res1 and res2, and asserting that res1=res2. The code of
the correct version is marked so that it will not be mutated (constraints encoding it
are hard constraints).

16

From table 2 it is clear that there is a trade-off between repairability and
runtime when deciding which mutations to use. When using mutation level 1, our
method repairs less faulty versions than [11, 12] (11 vs. 15,16), but is significantly
faster (2.3s vs. 38s on average). When using mutation level 2, the number of
faulty versions we fix increases to 18, which is better than [11, 12], but the
average time to repair increases to 48s.

For all versions that we can not repair (including those that do not appear
in the table), we are able to say that they can not be fixed using the given set of
mutations. Using mutation level 1 it takes approximately 2 seconds on average to
reach the conclusion that the program can not be fixed using mutation sets of size
1, and approximately 7 seconds to reach that conclusion for sets of size 2 (we did
not collect information about larger sizes though it is possible). Using mutation
level 2 these times increase significantly to 1.5 and 24 minutes, respectively.

Note that the runtime of mutation level 1 for version number 10 is excep-
tionally large. This is because this version requires applying two mutations in
two different locations in order to be repaired. Since we inspect programs with
increasing size of mutation sets, we have to first apply all mutation sets of size 1
before inspecting any mutation sets of size 2. Though our method takes longer
to produce this multi-line repair, it succeeds while [11, 12] fail.

Since the TCAS program does not contain any loops or recursive calls, all
returned programs are guaranteed to be (fully) correct, and the unwinding bound
is insignificant. Therefore, we also evaluated our algorithm on a set of programs
with loops. This set contains implementations of commonly known algorithms
(e.g., bubble-sort and max-sort) in which we inserted bugs to create different
versions (a total of 10 faulty versions). All bugs can be fixed using mutation
level 1, but some require multi-line repair (up to 3 mutations at a time). In all
the above experiments a correct repair was found for a bound as small as 3.
Furthermore, for a bound of 3, all returned programs were found to be correct
(and not only bounded correct) by a manual inspection. These results suggest
that though our algorithm only guarantees bounded correctness, in many cases
the returned programs are correct, even when using a small bound and even in
the presence of several bugs.

7 Conclusion and Future Work

This work presents a novel approach to program repair. Given an erroneous
program, a set of assertions and a predefined set of mutations, our algorithm
returns all minimal repairs to the program, in increasing number of changes.

Since the number of optional repairs might be huge, it is necessary to prune
the search space whenever possible. Our technique does it by blocking all repairs
that are not minimal: Whenever a successful repair is found, all repairs that use
a superset of its mutations are blocked. Thus, a significant pruning of the search
space is obtained.

Another promising direction is to block sets of mutations that are guaranteed
not to succeed in repairing, based on previously seen unsuccessful once.

17

References

1. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ansi-c programs. In
Tools and Algorithms for the Construction and Analysis of Systems, pages 168–176.
Springer, 2004.

2. L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms
for the Construction and Analysis of Systems, pages 337–340. Springer, 2008.

3. L. De Moura and N. Bjørner. Satisfiability modulo theories: An appetizer. In
Formal Methods: Foundations and Applications, pages 23–36. Springer, 2009.

4. V. Debroy and W. E. Wong. Using mutation to automatically suggest fixes for
faulty programs. In Software Testing, Verification and Validation (ICST), 2010
Third International Conference on, pages 65–74. IEEE, 2010.

5. V. Debroy and W. E. Wong. Combining mutation and fault localization for auto-
mated program debugging. Journal of Systems and Software, 90:45–60, 2014.

6. F. DeMarco, J. Xuan, D. Le Berre, and M. Monperrus. Automatic repair of buggy
if conditions and missing preconditions with SMT. In Proceedings of the 6th Inter-
national Workshop on Constraints in Software Testing, Verification, and Analysis,
pages 30–39. ACM, 2014.

7. H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimentation with
testing techniques: An infrastructure and its potential impact. Empirical Software
Engineering, 10(4):405–435, 2005.

8. B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In
Computer Aided Verification, pages 226–238. Springer, 2005.

9. D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation learned from
human-written patches. In Proceedings of the 2013 International Conference on
Software Engineering, pages 802–811. IEEE Press, 2013.

10. E. Kneuss, M. Koukoutos, and V. Kuncak. Deductive program repair. In Computer
Aided Verification, pages 217–233. Springer, 2015.

11. R. Könighofer and R. Bloem. Automated error localization and correction for
imperative programs. In Formal Methods in Computer-Aided Design (FMCAD),
2011, pages 91–100. IEEE, 2011.

12. R. Könighofer and R. Bloem. Repair with on-the-fly program analysis. In Hardware
and Software: Verification and Testing, pages 56–71. Springer, 2013.

13. C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A systematic study
of automated program repair: Fixing 55 out of 105 bugs for 8 each. In Software
Engineering (ICSE), 2012 34th International Conference on, pages 3–13. IEEE,
2012.

14. C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A generic method
for automatic software repair. Software Engineering, IEEE Transactions on,
38(1):54–72, 2012.

15. M. H. Liffiton and J. C. Maglalang. A cardinality solver: more expressive con-
straints for free. In Theory and Applications of Satisfiability Testing–SAT 2012,
pages 485–486. Springer, 2012.

16. M. H. Liffiton, A. Previti, A. Malik, and J. Marques-Silva. Fast, flexible MUS
enumeration. Constraints, pages 1–28, 2015.

17. M. H. Liffiton and K. A. Sakallah. Algorithms for computing minimal unsatisfiable
subsets of constraints. Journal of Automated Reasoning, 40(1):1–33, 2008.

18. F. Long and M. Rinard. Prophet: Automatic patch generation via learning from
successful patches. 2015.

18

19. F. Long and M. Rinard. Staged program repair with condition synthesis. In Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
pages 166–178. ACM, 2015.

20. M. Martinez and M. Monperrus. Mining software repair models for reasoning on
the search space of automated program fixing. Empirical Software Engineering,
20(1):176–205, 2015.

21. S. Mechtaev, J. Yi, and A. Roychoudhury. Directfix: Looking for simple program
repairs. In Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on, volume 1, pages 448–458. IEEE, 2015.

22. S. Mechtaev, J. Yi, and A. Roychoudhury. Angelix: Scalable multiline program
patch synthesis via symbolic analysis. ICSE, 2016.

23. H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. Semfix: Program
repair via semantic analysis. In Proceedings of the 2013 International Conference
on Software Engineering, pages 772–781. IEEE Press, 2013.

24. Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller. Automated
fixing of programs with contracts. Software Engineering, IEEE Transactions on,
40(5):427–449, 2014.

25. Y. Qi, X. Mao, and Y. Lei. Efficient automated program repair through fault-
recorded testing prioritization. In 2013 IEEE International Conference on Software
Maintenance, pages 180–189. IEEE, 2013.

26. Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. Does genetic programming work
well on automated program repair? In Computational and Information Sciences
(ICCIS), 2013 Fifth International Conference on, pages 1875–1878. IEEE, 2013.

27. U. Repinski, H. Hantson, M. Jenihhin, J. Raik, R. Ubar, G. D. Guglielmo,
G. Pravadelli, and F. Fummi. Combining dynamic slicing and mutation oper-
ators for esl correction. In Test Symposium (ETS), 2012 17th IEEE European,
pages 1–6. IEEE, 2012.

28. S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard. Automatic error
elimination by horizontal code transfer across multiple applications. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 43–54. ACM, 2015.

29. C. Von Essen and B. Jobstmann. Program repair without regret. Formal Methods
in System Design, 47(1):26–50, 2015.

30. Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and A. Zeller. Au-
tomated fixing of programs with contracts. In Proceedings of the 19th international
symposium on Software testing and analysis, pages 61–72. ACM, 2010.

31. W. Weimer, Z. P. Fry, and S. Forrest. Leveraging program equivalence for adap-
tive program repair: Models and first results. In Automated Software Engineering
(ASE), 2013 IEEE/ACM 28th International Conference on, pages 356–366. IEEE,
2013.

19

