Poster: Program Repair That Learns From Mistakes

Bat-Chen Rothenberg”
Technion - Israel Institute of Technology
batg@cs.technion.ac.il

ABSTRACT

Automated program repair is a very active research field, with
promising results so far. Several program repair techniques follow
a Generate-and-Validate work-scheme: programs are iteratively
sampled from within a predefined repair search space, and then
checked for correctness to see if they constitute a repair.

In this poster, we propose an enhanced work-scheme, called
Generate-Validate-AnalyzeErr, in which whenever a program is
found to be incorrect, the error trace that is the evidence of the bug
is further analyzed to obtain a search hint. This hint improves the
sampling process of programs in the future. The effectiveness of
this work-scheme is illustrated in a novel technique for program
repair, where search hints are generated in a process we call er-
ror generalization. The goal of error generalization is to remove
from the search space all programs that exhibit the same erroneous
behavior.

The aim of this poster is to present our vision of the future of
program repair, and trigger research in directions that have not
been explored so far. We believe that many existing techniques can
benefit from our new work-scheme, by focusing attention on what
can be learned from failed repair attempts. We hope this poster
inspires others and gives rise to further work on this subject.

ACM Reference Format:

Bat-Chen Rothenberg and Orna Grumberg. 2018. Poster: Program Repair
That Learns From Mistakes. In ICSE '18 Companion: 40th International Con-
ference on Software Engineering Companion, May 27-June 3, 2018, Gothenburg,
Sweden. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3183440.
3195104

1 INTRODUCTION

In the process of software production and maintenance, much ef-
fort is invested in order to ensure that the product is as bug free
as possible. Manual bug repair is time-consuming and requires
close acquaintance with the checked program. Therefore, in recent
years there has been much progress in the development of tools for
automated program repair.

Existing program repair techniques look for a repair to a pro-
gram P by making changes to P according to a predefined set of
rules. We refer to the set of programs created in this way as the

“Work of this author was partially supported by the Technion Hiroshi Fujiwara cyber
security research center and the Israel cyber bureau.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE °18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5663-3/18/05.

https://doi.org/10.1145/3183440.3195104

Orna Grumberg
Technion - Israel Institute of Technology
orna@cs.technion.ac.il

search space of the technique, and to any program in it as a candi-
date program. Many techniques ([2-5]) use a Generate-and-Validate
working scheme. This means that each time a candidate program
is sampled according to a certain policy, and the correctness of
this program is examined. If it is correct - it is returned as a repair,
otherwise - another candidate program is chosen, and so on.

In this work, we propose an enhanced working scheme, called
Generate-Validate-AnalyzeErr, in which whenever a program is
found to be incorrect, a witness of the bug is further analyzed
to obtain a search hint, which improves the sampling of candidate
programs in the future. We call it "repair that learns from mistakes".

2 GENERATE-VALIDATE-ANALYZE ERROR

An illustration of the Generate-and-Validate work-scheme is pre-
sented in Figure 1a. This scheme begins with the Generate stage,
where a candidate program P’ is sampled according to a certain
policy. Then, the Validate stage checks if that program is correct
or not. If it is correct, then it is returned as a repair. Otherwise,
the Generate stage samples a different program, and the interplay
continues.

In the simple Generate-and-Validate scheme, the output of the
Validate stage is a plain yes-or-no answer. However, in cases where
the Validate stage is realized by running all tests in a test suite, a
"no" answer is coupled with a witness in the form of an error trace.
An error trace is a triple (I, 7, 2), where I is an input to P’ leading
to an output different than expected in the test suite, 7 is the path
(i.e., sequence of statements) this input follows during execution,
and X is the sequence of program states (i.e., variable valuations) at
every point along 7. ! In fact, even if the Validate stage is realized
by a formal verification tool checking the validity of some safety
property, most such tools also return an error trace in case the
property is violated (in which case the input causes the violation
of the property).

Our main insight is that the knowledge embedded in error traces
is not exploited in the traditional Generate-and-Validate work-
scheme. Therefore, we propose a novel work-scheme, which we call
Generate-Validate-AnalyzeErr (cf. Figure 1b). In our new scheme,
an additional stage named AnalyzeErr is inserted after the Validate
stage, before returning to the Generate stage. Whenever a candidate
program P’ is found incorrect, the witness error trace is passed on
to the AnalyzeErr stage. There, further analysis is carried out, and
the result is a search hint that is passed on to the Generate stage.

We consider a search hint to be any information that can be
extracted from an error trace and used to facilitate or improve the
Generate stage. For example, for an error trace (I, 7, %), a useful
search hint can be a set of programs that contain a bug on the input
I. Such a set is useful, as it can be pruned from the search space

!For some applications of our work-scheme, 7 and = might not be necessary and may
be omitted from the definition.

https://doi.org/10.1145/3183440.3195104
https://doi.org/10.1145/3183440.3195104
https://doi.org/10.1145/3183440.3195104

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

Program P’
TN
Generate / . Validate
Program P Q Correct
— —
. ,
S //
Incorrect

(a) Generate-and-Validate

Bat-Chen Rothenberg and Orna Grumberg

Program P’
Generate /'”/ \\\ Validate
Program P a Q Correct
— —
I : AnalyzeErr

X
Vad /Incorrect
Search o S/ .
hint S~
— — Error trace

(b) Generate-Validate-AnalyzeErr

Figure 1: work-schemes for program repair

without further inspection. One might be interested in a more light-
weight AnalyzeErr stage, at the expense of possibly losing valid
repairs. In this case, a search hint can eliminate from the search
space a set of programs that are only likely to contain a bug, but
are not guaranteed to do so. The option to fine tune the level of
effort required during AnalyzeErr is one of the great advantages of
our work-scheme.

In methods where the Generate stage is based on ranking all
candidate programs and iteratively choosing the best one, a search
hint can also be used to improve ranking on-the-fly. For example, a
search hint can be a set of program locations that are more suspi-
cious than others. Fine tunning of the analysis level is possible also
in this example; one may simply return the set of statements in 7,
or apply different methods for fault localization, e.g., [1], to obtain
a smaller subset of it.

The above examples are just the tip of the iceberg of exploiting
search hints for program repair. We believe that the development
of useful, sophisticated search hints can be a fruitful research topic.
We hope this poster inspires others and gives rise to further work
on this subject.

3 ERROR GENERALIZATION FOR
MUTATION-BASED PROGRAM REPAIR

To demonstrate how beneficial Generate-Validate-AnalyzeErr can
be, we have extended our program repair method [5], which fol-
lows Generate-and-Validate, to Generate-Validate-AnalyzeErr. The
additional AnalyzeFErr stage is based on a novel error explanation
method we have developed, called error generalization. The imple-
mentation of the improved algorithm is currently work-in-progress,
but we expect to see a significant boost in performance.

Mutation-based program repair. In [5], we considered repair of C
programs with respect to assertions in the code. Repair was done
using a predefined set Mut of mutations, which are syntactic rules
for replacement of expressions in the program (e.g., replace + with
-). The search space was created by applying mutations from this
set, anywhere in the program (including the possibility to apply
multiple mutations to different locations at once).

Our approach followed a simple Generate-and-Validate scheme,
using an interplay between a SAT solver and an SMT solver. The
former was used for the generate stage; we have constructed a
boolean formula where each satisfying assignment corresponds to
a program in the search space. The later was used for the validate
stage; a program was represented using an SMT formula which is
satisfiable iff the program has a bug.

Error generalization. Next, we provide a brief overview of our
error generalization algorithm. Given an error trace (I, 7, %) and
the set of mutations Mut, we denote 7 = sy, .., $p—1, > = 00, .., On
and Mut(s) is the set of statements obtained by applying mutations
from Mut to s . The search hint provided by error generalization is
a set of paths, I, all ending in an assertion violation on input I (in
particular, 7z € IT). This way, even though the bug was found in a
specific program, several candidate programs can be removed from
the search space (all those programs that contain a path in IT).

For the generalization process, we use state formulas. A state
formula is a first-order formula over the variables of the program;
a satisfying assignment of it corresponds to a valuation of pro-
gram variables, i.e., a state of the program. We generalize 7 to II
by generalizing each state o; to a state formula, ¢;. In particular,
the generalization ¢, of o, represents only states violating the
assertion.

Given the sequence of state formulas ¢y . .. ¢, we say that a
program statement s is prohibited in location i, if whenever the
program is in a state satisfying ¢;, the execution of s will lead to
a state satisfying ¢;+1. The search hint IT is the set of all paths
s(’), . 31/1—1’ where for all i, slf € Mut(s;) and slf is prohibited in i.

The wisdom is in computing the sequence ¢q . . . ¢ so that as
many statements are prohibited in as many locations as possi-
ble. Our algorithm computes this sequence in a backwards fash-
ion; first ¢, is set to the negation of the assertion, and then ¢;
is iteratively computed from ¢;41, while taking into considera-
tion Mut(s;). Backwards computation of formulas is done using a
weakest-precondition computation. Abstraction techniques can be
used to increase efficiency at the expense of making IT smaller.

REFERENCES

[1] Evren Ermis, Martin Schaf, and Thomas Wies. 2012. Error invariants. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) 7436 LNCS (2012), 187-201. https://doi.org/
10.1007/978-3-642-32759-9_17

[2] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A generic method for automatic software repair. Software Engineering,
IEEE Transactions on 38, 1 (2012), 54-72.

[3] Fan Long and Martin Rinard. 2015. Prophet: Automatic patch generation via
learning from successful patches. (2015).

[4] Urmas Repinski, Hanno Hantson, Maksim Jenihhin, Jaan Raik, Raimund Ubar,
Giuseppe Di Guglielmo, Graziano Pravadelli, and Franco Fummi. 2012. Combining
dynamic slicing and mutation operators for ESL correction. In Test Symposium
(ETS), 2012 17th IEEE European. IEEE, 1-6.

[5] Bat-Chen Rothenberg and Orna Grumberg. 2016. Sound and Complete Mutation-
Based Program Repair. In FM 2016: Formal Methods: 21st International Symposium,
Limassol, Cyprus, November 9-11, 2016, Proceedings 21, Vol. 9995. https://doi.org/
10.1007/978-3-319-48989-6

https://doi.org/10.1007/978-3-642-32759-9_17
https://doi.org/10.1007/978-3-642-32759-9_17
https://doi.org/10.1007/978-3-319-48989-6
https://doi.org/10.1007/978-3-319-48989-6

