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Abstract. Despite the increasing effectiveness of model checking tools,
automatically re-verifying a program whenever a new revision of it is
created is often not feasible using existing tools. Incremental verifica-
tion aims at facilitating this re-verification, by reusing partial results. In
this paper, we propose a novel approach for incremental verification that
is based on trace abstraction. Trace abstraction is an automata-based
verification technique in which the program is proved correct using a se-
quence of automata. We present two algorithms that reuse this sequence
across different revisions, one eagerly and one lazily. We demonstrate
their effectiveness in an extensive experimental evaluation on a previ-
ously established benchmark set for incremental verification based on
different revisions of device drivers from the Linux kernel. Our algo-
rithm is able to achieve significant speedups on this set, compared to
both stand-alone verification and previous approaches.

1 Introduction

Manual detection of bugs in software is extremely time consuming and requires
expertise and close acquaintance with the code. Yet, for some applications, deliv-
ering a bug-free product is crucial. Using automated program verification tools
is a useful means to ease the burden. Despite the increasing effectiveness of such
tools, advancements in technology of the past decade have given rise to new
challenges. Modern software consists of thousands of lines of code and is devel-
oped by dozens of developers at a time. As a result, the software update rate
is extremely high and dozens or even hundreds of successive program versions
(also called revisions) are created every day. Automatically re-verifying the entire
program whenever a new revision is created is often not feasible using existing
tools.

Incremental verification is a methodology designed to make re-verification
realistic. When a program revision undergoes incremental verification, changes
made from the previous revision are taken into account in an attempt to limit
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the analysis to only the parts of the program that need to be reanalyzed. Partial
verification results obtained from previous revisions can help accomplish this
task and can also be used to make analysis more effective.

The development of incremental verification techniques is a long-standing
research topic (e.g., see [22,6,20,8,23,19,15]). The main challenge these techniques
face is deciding which information to pass on from the verification of one revision
to another, and to find effective ways to reuse this information. The proposed
solutions vary, based on the underlying non-incremental verification technique
used. For example, the technique proposed by He, Mao, and Wang [15] is based on
assume-guarantee reasoning, and thus suggests reusing contextual assumptions,
whereas the technique by Sery, Fedyukovich, and Sharygina [23] is based on
bounded model checking using function summaries, and thus suggests reusing
these summaries.

In this paper, we propose a new technique for incremental verification, which
is based on the verification method of Heizmann, Hoenicke and Podelski [16,17].
At the basis of this verification method is the idea of looking at the basic state-
ments of the program, i.e., its assignments and conditions, as letters of a finite
alphabet. Following this point of view, the paths of the program can be seen as
words over this alphabet; the program itself can be seen as a finite automaton
whose states are the program locations, and whose language is a set of paths.
The way the method works is by constructing an abstraction of the set of infea-
sible program paths, called a trace abstraction, which is a sequence of automata
over the alphabet of statements. Our suggestion is to use this trace abstraction
for incremental verification. We believe that some of its properties, which we will
present in later sections, make it an ideal candidate for reuse.

The paper is organized as follows: In Section 2 we will provide notations and
formal definitions. Then, in Section 3, we will briefly review the work of [16,17]
on which our incremental approach is based. Next, in Section 4, we will present
our approach, and in Section 5 we will discuss our implementation details, and
present extensive experimental results. Finally, in Section 6 we will survey related
work, and in Section 7 we will conclude.

2 Preliminaries

In this section we will present the formal setting of our work. Basic concepts
from the world of verification, such as a program and program correctness, will
be defined in terms of formal languages and automata.

Traces. Throughout the paper, we assume the existence of a fixed set of state-
ments, ST . The reader should think of this set as the set of all possible statements
one can compose in a given programming language. An alphabet is a finite non-
empty subset of ST . A trace over the alphabet Σ, denoted π, is an arbitrary
word over Σ (i.e., π ∈ Σ∗).

Programs. It is common to represent a program using its control flow graph
(CFG). The set of vertices of the CFG is the set of program locations L, which
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`0: assume p!=0;

`1: while(n>=0) {
`2: assert p!=0;

if(n==0) {
`3: p:=0;

}
`4: n--;

}

`0 `1

`2

`3

`4

`5

`e

p!=0

n>=0

n==0

p:=0

n != 0

p==0

n--

n < 0

Fig. 1: Pseudo-code of a program Pex1 and its control-flow automaton APex1
.

contains a distinguished initial location, li, and a subset of distinguished error
locations, Le. Edges of the CFG are labeled with statements of the program.
An edge (lj , s, lk) appears in the graph iff the control of the program reaches
location lj , i.e., iff it is possible to continue to location lk if the statement s
executes successfully. A trace is an error trace of the program if it labels a path
from li to some error location le ∈ Le in this graph.

In our setting, we prefer to view the program as an automaton over the
alphabet of statements, instead of a graph. Formally, we define a program P as
an automaton (Q,Σ, q0, δ, F ), called a control-flow automaton, where:

1. Q, the (finite) set of automaton states, is the set of all program locations L.
2. Σ, the alphabet of the automaton, is the set of all statements that appear

in the program. Note that this set is indeed an alphabet according to our
previous definition (i.e., Σ ⊆ ST ).

3. q0, the initial state of the automaton, is the initial location li.
4. δ, the transition relation, is a subset of L×Σ × L containing exactly those

triples that are edges of the CFG.
5. F , the set of final states, is the set of error locations, Le.

By construction, the language of this automaton, L(P), is the set of error traces
of the program.

Example 1. Figure 1 presents the pseudo-code of a program Pex1, along with its
control-flow automaton, APex1

. The correctness of this program is specified via
the assert statement at location `2: every time this location is reached, the value
of the variable p must not equal 0. Thus, modeling of the assert statement is
done using an edge labeled with the negation of the assertion (here, p==0 ) to
a fresh error location, `e. The initial state of the automaton is the entering point
of the program, `0, and the only accepting state is `e.

Correctness. We assume a fixed set of predicates Φ, which comes with a binary
entailment relation. If the pair (ϕ1, ϕ2) belongs to the entailment relation, we
say that ϕ1 entails ϕ2 and we write ϕ1 |= ϕ2. We also assume a fixed set HT of
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triples of the form (ϕ1, s, ϕ2), where ϕ1, ϕ2 ∈ Φ and s ∈ ST . A triple (ϕ1, s, ϕ2)
is said to be a valid Hoare triple if it belongs to HT. In this case, we write
{ϕ1}s{ϕ2}. The set of valid Hoare triples with s ∈ Σ is denoted HTΣ . Given
a set S ⊆ HT, we denote by ΦS the set of predicates that appear in S (i.e., all
predicates that are the first or the last element of some triple in S).

Next, we extend the notion of validity from statements to traces. Given
a trace π = s1 · · · sn, where n ≥ 1, the triple (ϕ1, π, ϕn+1) is valid (and
we write {ϕ1}π{ϕn+1}), iff there exists a sequence of predicates ϕ2 · · ·ϕn s.t.
{ϕi}si{ϕi+1} for all 1 ≤ i ≤ n. For an empty trace π (a trace of length 0), the
triple (ϕ, π, ϕ′) is valid iff ϕ entails ϕ′.

In order to define correctness, we also assume the existence of a pair of specific
predicates from Φ, true and false. A trace π is infeasible if {true}π{false}. The
set of all infeasible traces over the alphabet Σ is denoted infeasibleΣ . Finally,
a program P is said to be correct if all error traces of it are infeasible. That is,
if L(P) ⊆ infeasibleΣ , where Σ is the alphabet of the program.

3 Verification Using Trace Abstraction

In this section we will review the work of [16] and [17], which presents an
automata-based approach for verification, upon which our incremental verifi-
cation scheme is based. Even though some of the notions had to be adapted to
our setting, all relevant theorems remain valid.

3.1 Floyd-Hoare Automata

We begin by introducing the notion of a Floyd-Hoare automaton, presented
in [17], and describing some of its key properties. Intuitively, a Floyd-Hoare
automaton is an automaton over an alphabet Σ whose states can be mapped to
predicates from Φ and whose transitions can be mapped to valid Hoare triples.
The motivation behind this definition is that we want Floyd-Hoare automata
to accept only infeasible traces, by construction. Formally, we use the following
definition:

Definition 1 (Floyd-Hoare automaton) A Floyd-Hoare automaton is a tu-
ple

A = (Q,Σ, q0, δ, F, θ)

where Q is a finite set of states, Σ is an alphabet, q0 ∈ Q is the initial state,
δ ⊆ Q × Σ × Q is the transition relation, F ⊆ Q is the set of final states, and
θ : Q → Φ is a mapping from states to predicates s.t. the following conditions
hold:

1. θ(q0) = true.
2. For every q ∈ F , θ(q) = false.
3. For every triple (qi, s, qj) ∈ δ, {θ(qi)}s{θ(qj)}.
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The function θ is called the annotation of A. The image of θ (i.e., the set of
all predicates ϕ ∈ Φ s.t. there exists a q ∈ Q for which θ(q) = ϕ) is called the
predicate set of A and is denoted ΦA .

Theorem 1 ([17, page 12]) Every trace accepted by a Floyd-Hoare automaton
A is infeasible. That is, for every Floyd-Hoare automaton A over Σ,

L(A) ⊆ infeasibleΣ

. In what follows, we define a mapping from Floyd-Hoare automata to sets of
valid Hoare triples, and vice versa, using a pair of functions, α and β. The func-
tion α is a function from sets of valid Hoare triples to Floyd-Hoare automata. A
set S of valid Hoare triples over Σ is mapped by α to the Floyd-Hoare automaton
AS = (QS , Σ, q0S , δS , FS , θS) where:

– QS = {qϕ|ϕ ∈ ΦS} ∪ {qtrue, qfalse}.
– q0S = qtrue
– δS = {(qϕ1

, s, qϕ2
)|(ϕ1, s, ϕ2) ∈ S}

– FS = {qfalse}
– ∀qϕ ∈ QS θS(qϕ) = ϕ

Note that this is indeed a Floyd-Hoare automaton according to definition 1, since
S contains only valid Hoare triples.

The function β is a function from Floyd-Hoare automata to sets of valid
Hoare triples. Given a Floyd-Hoare automaton A = (Q,Σ, q0, δ, F, θ), β maps
A to the set {(θ(qi), s, θ(qj)) | (qi, s, qj) ∈ δ}. By definition 1 (specifically, by
requirement number 3 of θ), this set contains only valid Hoare triples.

3.2 Automata-Based Verification

Next, we describe how Floyd-Hoare automata can be used to verify programs
via trace abstraction [16]. Formally, a trace abstraction is a tuple of Floyd-
Hoare automata (A1, . . . ,An) over the same alphabet Σ. The alphabet Σ is
referred to as the alphabet of the trace abstraction. We say that a program P is
covered by (A1, . . . ,An) if P and (A1, . . . ,An) are over the same alphabet and
L(P) ⊆ L(A1) ∪ . . . ∪ L(An).

Theorem 2 ([16, page 7]) Given a program P, if there exists a trace abstrac-
tion (A1, . . . ,An) s.t. P is covered by (A1, . . . ,An), then P is correct.

Theorem 2 implies a way to verify a program P, namely, by constructing a
trace abstraction (A1, . . . ,An) s.t. P is covered by (A1, . . . ,An). This is realized
in [16] in an algorithm that is based on the counter-example guided abstrac-
tion refinement (CEGAR) paradigm (Fig. 2). Initially, the trace abstraction is
an empty sequence of automata, and then it is iteratively refined by adding
automata, until the program is covered by the trace abstraction.

Each iteration consists of two phases: validation and refinement. During the
validation phase, we check whether the equation L(P ∩ A1 ∩ · · · ∩ An) = ∅ holds.
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program P

P is correct P is incorrect

L(P ∩ A1 ∩ · · · ∩ An) = ∅ ? π is infeasible?

no

return error trace π
such that

π ∈ L(P ∩ A1 ∩ · · · ∩ An)

yes

return Floyd-Hoare automaton
An+1 such that π ∈ L(An+1)

yes no

n := 0

Fig. 2: [16] CEGAR-based scheme for non-incremental verification using trace
abstraction.

The overline notation stands for computing automata complementation and the
∩ notation stands for computing automata intersection. Note that complemen-
tation, intersection and emptiness checking, can all be done efficiently for finite
automata. Checking whether this equation holds is semantically equivalent to
checking whether L(P) ⊆ L(A1)∪ . . .∪L(An), so if the answer is ”yes”, we can
state that the program is correct (Theorem 2). If the answer is ”no”, then we
get a witness in the form of a trace π s.t. π ∈ L(P ∩ A1 ∩ · · · ∩ An), which is
passed on to the refinement phase.

During the refinement phase, π is semantically analyzed to decide whether it
is infeasible or not. If it is not, we can state that the program is incorrect, since
π is a feasible error trace of P, i.e., an execution of P that leads to an error. If
it is, then the proof of its infeasibility can be used to construct a Floyd-Hoare
automaton An+1 that accepts π (in particular, the way this is done in [17], is by
obtaining a set of valid Hoare triples from the proof and applying α on it). This
automaton is then added to the produced trace abstraction, and the process is
repeated.

Example 2. Recall program Pex1 from Figure 1. We claim that an assertion vio-
lation is not possible in this program. A convincing argument for this claim can
be made by considering separately those executions that visit `3 at least once
and those who do not. For the later, p is never assigned during the execution, and
the assume statement makes sure that initially p does not equal 0, so every time
the assertion is reached the condition p!=0 must hold. For the former, since `3 is
reached, the true branch of the if statement was taken during that iteration, so
n equals 0 at `4. Therefore, after the execution of n--, n will equal -1, and thus
the loop will be exited and the assertion will not be reached.

Program Pex1 is successfully verified using the scheme of Figure 2. The trace
abstraction obtained is the tuple (A1,A2), presented in Figure 3. Observe that
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q0true

q1p 6= 0

q2false

Σ

Σ

p!=0

p==0

Σ\{ p:=0 }

(a) A1

p0true

p1n = 0

p2n = −1

p3false

n==0

n--

n>=0

Σ

Σ\{ n-- }

Σ\{ n-- }

Σ

(b) A2

Fig. 3: Floyd-Hoare automata A1 and A2 with their respective accepting states
q2 and p3. The gray frames labeling transitions represent letters from Σ, where
an edge labeled with G ⊆ Σ means a transition reading any letter from G.
The green frames labeling states represent predicates assigned to states by the
annotation θ.

the language of A1 consists of all traces that contain the statement p!=0

followed by the statement p==0 , without an assignment to p in between. The
language of A2 consists of all traces that contain the statement n==0 followed
by the statement n-- and the statement n>=0 , without an assignment to
n between any of these three statements. As we have just explained, all error
traces of Pex1 fall into one of these categories (which one depends on whether or
not `3 is visited), so the inclusion L(APex1) ⊆ L(A1) ∪ L(A2) indeed holds.

4 Incremental Verification Using Trace Abstraction

In the previous section we saw a CEGAR-based algorithm for verification that
constructed a new trace abstraction. In this section, we show how incremental
verification can be done by reusing a given trace abstraction. For this incremen-
tal setting, in addition to the program P, the algorithm also gets as input a
trace abstraction TAR, which we call the reused trace abstraction. We call the
trace abstraction TAC that is constructed by the algorithm the current trace ab-
straction. In addition to the verification result, the algorithm also returns TAC

which might be reused in subsequent verification tasks. The alphabet of the
TAR, which we call reused alphabet and denote by ΣR, may be different from
the alphabet of the program P. We call the alphabet of the program current al-
phabet and denote it by ΣC . While there is no restriction on the reused alphabet
ΣR, the performance of the algorithm is expected to improve the more similar
it is to the current alphabet ΣC (i.e., the larger the set ΣR ∩ΣC is).
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4.1 Translation of Floyd-Hoare Automata

The rationale for reusing a trace abstraction TAR is that each Floyd-Hoare
automaton in it forms a proof that the set of traces it accepts is infeasible (see
Theorem 1), and therefore we do not need to analyze any trace in this set.
The organization of the information in the form of an automaton, gives us a
convenient way to get rid of all error traces of P that belong to this set: simply
by subtracting the automaton from the program (which is also an automaton).
Still, the above subtraction can not be done straight away, since the program P
and the reused trace abstraction TAR are not necessarily over the same alphabet.

Traces of the reused trace abstraction TAR that contain statements that are
not from the current alphabet ΣC are definitely not error traces of our program
and hence rather useless for us. Therefore, we would like to ”translate” the
reused trace abstraction from the reused ΣR to the current alphabet ΣC . We
first define our notion of such a ”translation” for valid Hoare triples and lift the
translation to Floyd-Hoare automaton afterwards.

Definition 2 (Translation of a set of valid Hoare triples) Given a set of
valid Hoare triples SΣR ⊆ HTΣR over the reused alphabet, we call a set of valid
Hoare triples SΣC ⊆ HTΣC over the current alphabet a translation of SΣR to
the current alphabet ΣC , if all valid Hoare triples in SΣR are also in SΣC . In
other words, SΣC ⊆ HTΣC is a translation if the following inclusion holds.

SΣR ∩HTΣR∩ΣC ⊆ SΣC

In order to lift our notion of ”translation” to Floyd-Hoare automata we use
function β which was defined in the previous chapter and maps a Floyd-Hoare
automata to a set of valid Hoare triples.

Definition 3 (Translation of a Floyd-Hoare automaton) Given a Floyd-
Hoare automaton AΣR over the reused alphabet ΣR, we call a Floyd-Hoare au-
tomaton AΣC over the alphabet ΣC a translation of AΣR to ΣC , if the set of
valid Hoare triples β(AΣC ) is a translation of β(AΣR) to ΣC .

Given a Floyd-Hoare automaton AΣR over the reused alphabet ΣR and a set
SΣC of valid Hoare triples over the current alphabet ΣC , we use the procedure
depicted in Fig. 4 to translate AΣR to a Floyd-Hoare automaton AΣC over the
current alphabet ΣC .

Proposition 1 Every Floyd-Hoare automaton AΣC that is constructed using the
procedure TranslateAutomaton, is a translation of the reused Floyd-Hoare
automaton AΣR to the current alphabet ΣC .

Proof. Since all valid Hoare triples removed from S1 when creating S2 were
over ΣR \ ΣC , then S1 ∩ HTΣR∩ΣC ⊆ S2. Therefore, by Definition 2, S2 is
a translation of S1 to ΣC . Now, S1 = β(AΣR), so we conclude that S2 is a
translation of β(AΣR) to ΣC . Next, we want to claim that β(AΣC ) = S2. This
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Input: A Floyd-Hoare automaton AΣR over ΣR and
a set of valid Hoare triples SΣC ⊆ HTΣC

Output: A Floyd-Hoare automaton AΣC over ΣC

1. Construct the set of valid Hoare triples S1 = β(AΣR).
2. Construct the set of valid Hoare triples S2 = (S1 \HTΣR\ΣC ) ∪ SΣC .
3. Return the Floyd-Hoare automaton AΣC = α(S2).

Fig. 4: Procedure TranslateAutomaton.

is correct because, according to the definitions of β and α, for every set S,
β(α(S)) = S, so in particular β(α(S2)) = S2. Thus, we conclude that β(AΣC )
is a translation of β(AΣR) to ΣC . By Definition 3, this means that AΣC is a
translation of AΣR to ΣC .

The procedure TranslateAutomaton enables us to translate the reused
trace abstraction TAR into the alphabet of the program, but the question that
remains is the choice of SΣC . I.e., the question how many and which valid Hoare
triples we should add in addition to the valid Hoare triples that are obtained
from TAR. The set SΣC can be any subset of HTΣC and obviously the larger
SΣC is, the more error traces of P (and other programs that occur in subsequent
verification tasks) are proven infeasible.

We note that we do not only have the costs for the construction SΣC itself. If
SΣC is larger, the automaton AΣC will have more transitions and the costs for
automata operations (e.g., complementation and intersection) and translations
in future verification tasks will be higher.

Thus, the choice of SΣC is a trade-off between how much effort we are willing
to spend on building the translated automata and using them, and how useful
they will be for proving the new program correct.

In our implementation we considered the following three options for SΣC :

Sempty
ΣC

= ∅
Sunseen
ΣC = {{ϕ1}s{ϕ2} | s ∈ ΣC \ΣR, ϕ1, ϕ2 ∈ ΦAΣR }
Sall
ΣC = {{ϕ1}s{ϕ2} | s ∈ ΣC , ϕ1, ϕ2 ∈ ΦAΣR }

Note that all three sets are indeed subsets of HTΣC , and all of them only
use predicates from ΦAΣR . As a result, the procedure TranslateAutomaton
with either of these sets as SΣC yields an Floyd-Hoare automaton AΣC whose
states were also states of the input AΣR (i.e., states are only removed and not
added). Also, in all three cases, transitions with irrelevant letters (i.e., letters
in ΣR \ΣC) are removed, while transitions with relevant letters (i.e., letters in
ΣC) remain.

The difference between the three options for SΣC lies in the transitions that
are added to AΣR . In the case of Sempty

ΣC
, no transitions are added at all. In this

case, translated automata are only useful to prove infeasibility of error traces
that remained unchanged from the previous version of the program P, but we do
not have any costs for the construction of SΣC . On the other end of the spectrum
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program P over ΣC

trace abstraction TAR =(AR1 , · · · ,A
R
m) over ΣR

P is correct

TAC = (A1, · · · ,An)
P is incorrect

TAC = (A1, · · · ,An)

translate (AR1 , · · · ,A
R
m)

to (AT1 , · · · ,A
T
m) over ΣC

L(P ∩ A1 ∩ · · · ∩ An) = ∅ ? π is infeasible?

no
return trace π

such that

π ∈ L(P ∩ A1 ∩ · · · ∩ An)

yes

return Floyd-Hoare automaton
An+1 such that
π ∈ L(An+1)

yes no

∀1 ≤ i ≤ m Ai := ATi
n := m

Fig. 5: Scheme for incremental verification using an eager approach.

there is Sall
ΣC , in which all valid Hoare triples over ΣC are added as transitions to

AΣC . Here, any error trace that can be proved infeasible using predicates from
ΦAΣR will be accepted by AΣC . However, in this case the construction of SΣC
is expensive and the resulting automata are often rather large.

The option Sunseen
ΣC suggests an intermediate solution, by considering only

valid Hoare triples over the difference ΣC \ΣR. The rationale is that most valid
Hoare triples over the intersectionΣC∩ΣR that are relevant to prove infeasibility
of error traces were already added when the reused Floyd-Hoare automaton AΣR
was constructed. In pracitice, there are only error traces whose infeasibility can
be shown with option Sall

ΣC but not with option Sunseen
ΣC if statements in the

program P have been reordered or existing statements were also added at other
positions of the program.

We have performed experiments with all three of these options. The set
that gave the best overall results on average, was Sall

ΣC and hence we used as
SΣC := Sall

ΣC in our experimental evaluation (see Section 5.1). The fact that Sall
ΣC

outperforms Sunseen
ΣC suggests, perhaps, that changes such as reordering code and

adding preexisting code (i.e., copy-pasting), on which Sunseen
ΣC has bad results, are

frequent in software evolution.

4.2 Reuse Algorithms

We now present two schemes for incremental verification, that differ in the strat-
egy they use for subtraction of Floyd-Hoare automata from the program. In both
schemes, any subtraction P−A is replaced with P∩A, which results in the same
language but uses different automata operations that more faithfully represent
our implementation.
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program P over ΣC

trace abstraction (AR1 , · · · ,A
R
m) over ΣR

P is correct

TAC = (A1, · · · ,An)
P is incorrect

TAC = (A1, · · · ,An)

translate (AR1 , · · · ,A
R
m)

to (AT1 , · · · ,A
T
m) over ΣC

L(P ∩ A1 ∩ · · · ∩ An) = ∅ ? π is infeasible?

∃1 ≤ i ≤ m s.t. π ∈ L(ATi )?

no

return trace π s.t.

π ∈ L(P ∩ A1 ∩ · · · ∩ An)

yes

return Floyd-Hoare automaton
An+1 such that
π ∈ L(An+1)

no

yes

An+1 = ATi

yes no

n := 0

Fig. 6: Scheme for incremental verification using a lazy approach.

Eager Reuse. The first scheme, presented in Figure 5, suggests an eager ap-
proach for the reuse of Floyd-Hoare automata. Here, subtraction of Floyd-Hoare
automata is done straight away, and entirely (all Floyd-Hoare automata in the
trace abstraction are subtracted). Then, the CEGAR-based algorithm continues
as in the non-incremental case. The current trace abstraction, TAC , contains all
automata translated from the reused trace abstraction TAR along with all other
automata obtained during the CEGAR loop.

An advantage of this scheme is that all traces whose infeasibility is shown
by a Floyd-Hoare automaton from TAR are are excluded right at the beginning.
On the other hand, we may have done some subtractions (or, in fact, inter-
sections) that did not change the language at all and hence were not useful.
For example, it is possible that for some automaton ATi translated from TAR,

L(P ∩ AT1 ∩ · · · ∩ ATi ) = L(P ∩ AT1 ∩ · · · ∩ ATi−1) and so the computation of the

intersection with ATi was done in vain. Note that all Floyd-Hoare automata are
added to TAC , regardless of whether they were useful or not, since retrieving
this information is prohibitively expensive due to technical reasons.

Lazy Reuse. The second scheme, presented in Figure 6, suggests a lazy approach
for the reuse of Floyd-Hoare automata. A Floyd-Hoare automaton is only sub-
tracted once we know that it is useful, i.e., that its subtraction will remove at
least one trace from the set of traces we have not yet proven infeasible.

In this scheme, the current trace abstraction is initially the empty sequence,
as in the non-incremental case. Then the CEGAR loop begins, but with an
additional phase, which we call the reuse phase, inserted between the validation
and refinement phases (which themselves are not changed). If the validation
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`0: if(p==0) {
`1: n:=-2;

}
`2: while(n>=0) {
`3: assert p!=0;

if(n==0) {
`4: p:=0;

}
`5: n--;

}

`0

`2

`3

`4

`5

`6

`1

`e

p!=0

p==0

n:=-2

n>=0

n==0

p:=0

n != 0

p==0n--

n < 0

Fig. 7: Program Pex2, which is a modified version of program Pex1. Changes from
Pex1 appear in red.

phase finds a trace π in L(P ∩ A1 ∩ · · · ∩ An), then the reuse phase first checks
whether this trace is accepted by some automaton ATi which was translated
from the reused TAR. If it is, then ATi is added to the current trace abstraction
and we return to the validation phase again. If it is not, then we pass π to the
refinement phase and proceed as before. The current trace abstraction in this
case includes only those automata translated from the reused TAR that were
added to it during the reuse phase, in addition to all those created during the
refinement phase.

Example 3. Figure 7 presents the source code and the control-flow automaton
of a program Pex2. This program is an updated version of Pex1 (see Figure 1),
where instead of assuming that p is initially different than 0, the variables n is
set to -2 if p equals 0. The alphabet ΣC of the control-flow automaton APex2

is the set of Pex2’s statements (i.e., ΣC = ΣR ∪ { n:=-2 }, where the reused
alphabet ΣR is the alphabet of APex1).

You will notice that despite the changes made, the assertion still can not be
violated. For executions who visit `4 (formerly `3) at least once, we can make
the same argument as we did in Example 2. For executions who do not visit `4,
the argument we used in Example 2 relied on p being initially different than 0,
so now it only applies to those executions beginning in a transition from `0 to
`2. For executions going from `0 to `1, we need a new argument. For them, we
can say that the visit in `1 guarantees n will be equal to -2 upon reaching `2,
and thus the loop will not be entered and the assertion will not be reached.

Figure 8 presents the current trace abstraction TAC = (AC1 ,AC2 ,AC3 ) pro-
duced by our algorithm, in both the Eager and the Lazy variants, when using
the tuple (A1,A2) from Figure 3 as the reused trace abstraction TAR. The first
two automata, AC1 and AC2 , are the translations of automata A1 and A2 to the
current alphabet ΣC , resp. The translation of the trace abstraction, in this case,
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amounts to adding transitions with the new letter, n:=-2 , where appropri-
ate. Specifically, n:=-2 was added to the 3 self-loops in A1, and to the self
loops from p0 and p3 in A2. The third automaton, AC3 , is a new Floyd-Hoare
automaton, obtained during the refinement phase.

q0true

q1p 6= 0

q2false

ΣC

ΣC

p!=0

p==0

ΣC\{ p:=0 }

(a) AC1

p0true

p1n = 0

p2n = −1

p3false

n==0

n--

n>=0

ΣC

ΣC\{ n-- ,
n:=-2

}

ΣC\{ n-- ,
n:=-2

}

ΣC

(b) AC2

r0true

r1n = −2

r2false

n:=-2

n>=0

ΣC

ΣC\{ n-- }

ΣC

(c) AC3

Fig. 8: Trace abstraction (AC1 ,AC2 ,AC3 ), which is the output of our algorithm for
Pex2, when using the tuple (A1,A2) from Figure 3 as TAR.

5 Evaluation

We have implemented our incremental verification algorithms on top of the Ul-
timate Automizer software verification tool, which is part of the Ultimate
program analysis framework 3. The source code is available on Github 4. We cur-
rently support incremental verification of C and Boogie programs with respect
to safety properties (e.g., validity of assertions or memory-access safety).

On-the-fly Computation For simplicity of presentation, schemes of our algo-
rithms in Figure 5 and Figure 6 show a stand-alone translation phase that pre-
cedes the CEGAR loop. According to these schemes, each automaton ARj in

the reused trace abstraction is first translated into an automaton ATj over the

current alphabet ΣC . In practice, computing ATj entirely can be quite expen-
sive, depending on the set of valid Hoare triples SΣC , as previously discussed.
Also, the computation of many transitions may turn out to be redundant, as we
may not need these transitions at any point during the CEGAR loop. Therefore,
our implementation translates automata on-the-fly, adding transitions only as

3 https://ultimate.informatik.uni-freiburg.de
4 https://github.com/ultimate-pa
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soon as the need for them emerges. On-the-fly translation may happen during
the reuse phase in the Lazy reuse algorithm, and during the validation phase in
both algorithms. Additionally, creation of Floyd-Hoare automaton An+1 in case
a trace is found infeasible during the refinement phase is already done on-the-fly
in the preexisting implementation of Ultimate Automizer. That is, transitions
are added to An+1 only if they are needed during the following validation phase.

5.1 Experimental Results

We have performed an extensive experimental evaluation of our approach on a set
of benchmarks previously established in [4], available on-line5. This benchmark
set is based on industrial source code from the Linux kernel, and contains 4,193
verification tasks from 1,119 revisions of 62 device drivers. A verification task
is a combination of driver name, revision number, and specification, where the
specification is one of six different rules for correct Linux kernel core API usage
(more details can be found in [4]). We excluded those tasks where Ultimate
Automizer was unable to parse the input program successfully, and were left
with a total of 2,660 verification tasks.

Our experiments were made on a machine with a 4GHz CPU (Intel Core i7-
6700K). We used Ultimate Automizer version 0.1.23-bb20188 with the default
configuration, which was also used in SV-COMP’18 6, [18]. In this configuration
Ultimate Automizer first uses SMTInterpol7 with Craig interpolation for
the analysis of error traces during the refinement phase, and if this fails, falls back
on Z3 8 with trace interpolation [11]. Validity of Hoare triples is also checked
with Z3. A timeout of 90s was set to all verification tasks and the Java heap size
was limited to 6GB.

For each verification task we verified the revision against the specification
three times: first, without any reuse, and then with reuse, using both the Eager
and the Lazy algorithms. The output trace abstraction of each revision was
used as the input trace abstraction of the next revision. The results of these
experiments are summarized in Table 1.

These results clearly show that our method, both when used with the Ea-
ger algorithm and with the Lazy one, manages to save the user a considerable
amount of time, for the vast majority of these benchmarks. The difference in per-
formance between the Eager and Lazy algorithms on these benchmarks was quite
negligible; both obtain a nontrivial speedup of around ×4.7 in analysis time, and
×3.6 in overall time, on average. When comparing mean analysis speedups of our
approach and that of [4], we get a speedup that is ×1.5 larger. But, what is ad-
ditionally interesting to note, is that we do not succeed on the same benchmarks
as [4] does; the best 15 series in our work and theirs are completely disjoint. This
suggests that the two methods are orthogonal.

5 https://www.sosy-lab.org/research/cpa-reuse/regression-benchmarks
6 https://sv-comp.sosy-lab.org/2018/
7 https://ultimate.informatik.uni-freiburg.de/smtinterpol, version 2.1-441-

gf99e49f
8 https://github.com/Z3Prover/z3, version master 450f3c9b
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Table 1: The results of our evaluation. Each row contains the results for a series
of revisions of a driver and one type of specification. The table only shows those
series where we could parse all files, allowing for a comparison in speedup with [4].
We also limited the display to the best 15 and the worst 10 series in terms of
speedup. The number of tasks specifies the number of files including the first
revision. The settings “Eager” and “Lazy” are divided in overall and analysis
time, where analysis time is the overall time without the time it took writing
the output trace abstraction to file. As the “Default” setting does not write an
output trace abstraction, its analysis time is the same as its overall time. All
times are given as seconds of wall time and do not include the time for the first
revision. The speedup colums compare the relative speedup between the Default
setting and the Lazy setting. The rows “Sum” and “Mean” show the sum and
mean of all the series where we were able to parse all the tasks, whereas the rows
“Sum (All)” and “Mean (All)” show the sum and the mean of all the tasks we
could parse. We adjusted the mean speedup of [4] for our subset by recomputing
their speedup relative to our shared subset, but their mean speedup in the “Mean
(All)” row refers to the original 4,193 tasks.

Default Eager Lazy

Driver Spec Tasks Overall Overall Analysis Overall Analysis
Speedup
Overall

Speedup
Analysis

[4]
Speedup

dvb-usb-rtl28xxu 08 1a 10 20.509 0.352 0.187 0.416 0.257 49.30 79.80 3.6
dvb-usb-rtl28xxu 39 7a 10 110.893 4.081 1.992 4.059 2.546 27.32 43.55 6.3
dvb-usb-rtl28xxu 32 7a 10 35.551 1.306 0.725 1.550 0.844 22.93 42.12 4.9
dvb-usb-az6007 08 1a 5 4.620 0.173 0.118 0.187 0.132 24.70 35.00 3.5
dvb-usb-az6007 39 7a 5 17.952 1.378 0.862 1.425 0.989 12.59 18.15 4.9
cx231xx-dvb 08 1a 13 3.330 0.303 0.206 0.323 0.228 10.30 14.60 1.8
panasonic-laptop 08 1a 16 3.466 0.337 0.222 0.384 0.257 9.02 13.48 2.4
spcp8x5 43 1a 13 5.531 0.632 0.437 0.618 0.432 8.94 12.80 1.6
panasonic-laptop 32 1 4 0.623 0.100 0.061 0.072 0.051 8.65 12.21 3.4
panasonic-laptop 39 7a 16 18.961 2.377 1.654 2.617 1.906 7.24 9.94 3.6
leds-bd2802 68 1 4 1.039 0.180 0.112 0.191 0.123 5.43 8.44 4.4
leds-bd2802 32 1 4 0.484 0.089 0.057 0.097 0.064 4.98 7.56 3.9
wm831x-dcdc 32 1 3 0.330 0.063 0.044 0.066 0.047 5.00 7.02 2.1
cx231xx-dvb 39 7a 13 17.536 3.389 2.425 3.464 2.517 5.06 6.96 3.2
ems usb 08 1a 21 2.334 0.502 0.327 0.543 0.362 4.29 6.44 2.9

. . . (for full results cf. http://batg.cswp.cs.technion.ac.il/publications/)

ar7part 32 7a 6 0.071 0.067 0.056 0.074 0.063 0.95 1.12 1.3
metro-usb 08 1a 25 0.394 0.497 0.330 0.518 0.356 0.76 1.10 2.1
rtc-max6902 32 7a 9 0.133 0.124 0.106 0.147 0.126 0.90 1.05 1.1
i2c-algo-pca 43 1a 7 0.012 0.018 0.018 0.019 0.019 1.00 1.00 1.0
dvb-usb-vp7045 43 1a 2 0.001 0.002 0.002 0.027 0.027 1.00 1.00 2.6
cfag12864b 43 1a 2 0.036 0.039 0.036 0.040 0.037 0.90 0.97 1.0
rtc-max6902 43 1a 5 0.278 0.273 0.262 0.303 0.291 0.91 0.95 1.1
magellan 32 7a 2 0.015 0.018 0.016 0.018 0.016 0.83 0.93 0.93
vsxxxaa 43 1a 2 0.030 0.037 0.033 0.036 0.032 0.83 0.93 6.8
ar7part 43 1a 2 0.036 0.043 0.038 0.044 0.039 0.81 0.92 1.2

Sum 1,177 529.258 142.856 107.543 146.275 112.225
Mean 13 5.881 1.587 1.195 1.625 1.247 3.618 4.716 3.17

Sum (All) 2,660 3, 048.373 434.853 334.603 448.424 349.69
Mean (All) 15 16.749 2.389 1.838 2.464 1.921 6.798 8.717 4.3
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Slowdowns are demonstrated for our worst 7 results. On the other hand, our
top 7 results all demonstrate speedups of more than an order of magnitude, with
an impressive max value of ×79.80. For each pair of successive revisions, we have
computed their edit-distance by summing up the number of added, modified and
deleted lines, and dividing by the total number of lines in the file. To compute
the edit-distance of a series, we have computed the mean edit-distance of all
revisions in it. We expected to see a correlation between the edit-distance of a
series and the speedup obtained for it. In general, such a correlation does seems
to exist; a speedup of greater than 4 is achieved mostly for revisions where the
edit distance is small. But, this correlation is not definitive. For example, we had
one series where the mean edit-distance was over 90 percent, but the speedup
was over ×60. Also, cases with slowdowns distribute evenly over the mean edit-
distance size.

6 Related Work

The validation of evolving software has been the subject of extensive research
over the years (see the book by Chockler et al. [10]). Several different problems
have been studied in this context, e.g., analyzing the semantic difference between
successive revisions [26] or determining which revision is responsible for a bug
[21,1]. In this section, we will focus on the problem of formally verifying all
program revisions.

A dominant approach to solve this problem is to only verify the first re-
vision, and then prove that every pair of successive revisions is equivalent. It
was suggested by Godlin and Strichman in [24], where they gave it the name
regression verification and introduced an algorithm that is based on the theory
of uninterpreted functions. Papers about regression verification are concerned
with improving equivalence checking and increasing its applicability. In [2], a
summary of program behaviors impacted by the change is computed for both
programs, and then equivalence is checked on summaries alone. Similarly, in [5],
checking equivalence is done gradually by partitioning the common input space
of programs and checking equivalence separately for each set in the partition. In
[13], a reduction is made from equivalence checking to Horn constraint solving.
In [25] applicability is extended to pairs of recursive functions that are not in
lock-step, and in [7] to multi-threaded concurrent programs. The work of [3] is
focused on Programmable Logic Controllers, which are computing devices that
control production in many safety-critical systems. Finally, [27] proposes a dif-
ferent notion of equivalence, which on top of the usual functional equivalence
also considers runtime equivalence.

Another approach towards efficiently verifying all program revisions, which
is the one we follow in this paper, is to use during each revision verification
partial results obtained from previous revisions, in order to limit necessary anal-
ysis. Work in this field vary based on the underlying non-incremental verification
technique used, which determines what information can be reused and how effi-
ciently so. The work we find most closely related to ours is that of Beyer et al
[4], which suggests to reuse the abstraction precision in predicate abstraction.
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Other techniques for reuse of verification results include reuse of function
summaries for bounded model checking [7], contextual assumptions for assume-
guarantee reasoning [15], parts of a proof or counter-example obtained through
ic3 [9] and inductive invariants [12]. Also, incremental techniques for runtime
verification of probabilistic systems modeled as Markov decision processes are
developed in [14]. For the special case of component-based systems, [19] uses
algebraic representations to minimize the number of individual components that
need to be reverified. Last, the tool Green [28] facilitates reuse of SMT solver re-
sults for general purposes, and authors demonstrate how this could be beneficial
for incremental program analysis.

7 Conclusion

We have presented a novel automata-based approach for incremental verification.
Our approach relies on the method of [16,17] which uses a trace abstraction as
a proof of correctness. Our idea is to reuse a trace abstraction by first trans-
lating it to the alphabet of the program under inspection, and then subtracting
its automata from the control-flow automaton. We have defined a procedure,
TranslateAutomaton, for automata translation, and two algorithms for reuse
of trace abstraction that differ in their strategy for automata subtraction. We
have evaluated our approach on a set of previously established benchmarks on
which we get significant speedups, thus demonstrating the usefulness of trace
abstraction reuse.
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